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ABSTRACT

Demands of modern mobile applications such as those related to remote healthcare and

augmented reality put significant pressure on the mobile devices regarding computing

and battery requirements. Further, the end users use these applications while roaming

in heterogeneous access networks such as WiFi and 4G. One way to fulfil these demands

is via application migration in a mobile cloud computing system, i.e., moving the appli-

cations from mobile device to the clouds. However, application migration comes with a

set of challenges including those related to mobility management, and network and cloud

selection. This thesis proposes, develops and validates a system called APOLLO. The

proposed system incorporates a Reinforcement learning agent to select the best combina-

tion of cloud and network in case of stochastic conditions such as unpredictable network

conditions. Using extensive simulations, we validate APOLLO and show that it efficiently

supports proactive application migration in a mobile cloud computing system.
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CHAPTER 1

INTRODUCTION

1.1 Introduction
The vast spread of mobile devices has encouraged developing a new class of applications.

Applications like augmented reality, virtual reality, patient monitoring, and mobile gam-

ing are increasing at a rapid pace targeting mobile devices. However, these applications

drain the limited resources of mobile devices in term of computing, storage, and battery.

Today’s mobile devices rely on Lithium-ion batteries as power sources and Silicon based

ICs as a computing unit. However, Lithium-ion batteries have low energy density and

Silicon based ICs generate heat as a side product of computation. There are no break-

throughs in batteries or CPUs technology in the near future. Consequently, we have to

utilize remote resources to supply the ever increasing mobile applications with resources.

Cloud Computing is a model for delivering virtualized resources and services over the

Internet [1]. To reach the cloud mobile devices utilize Heterogeneous Access Networks

(HANs). HANs are Wireless Access Networks which operate by heterogeneous technolo-

gies (e.g. WiFI, WiMAX, 4G) each of which is optimal for a particular situation and for

specific demands. Mobile Computing model enables mobile devices to send and receive

data while roaming across HANs. Mobile Cloud Computing combines the recent ada-

vances in the areas of Cloud Computing, Mobile Computing, and HANs.

Mobile Cloud Computing (MCC) is a computing paradigm that utilizes resources and

services of the cloud to overcome the resource scarceness of mobile devices. MCC incor-

porates cloud computing, mobile computing and HANs to provide mobile devices with

virtually unlimited resources [2]. MCC offloads data processing and storage from mobile

devices to the cloud, increasing the storage capacity and processing power. In MCC,

the mobile device acts as a smart terminal connecting to the cloud over HANs[3]; which

eliminates any resource restriction and provisions mobile applications with unlimited re-

sources.

1



1.2. Research Motivation 2

We envision the next generation of mobile devices to be smart terminals that have the

ability to (i.) run applications locally or on the cloud, (ii.) live migrate applications be-

tween mobile device(s) and cloud(s). By live migrate applications we mean, moving an

application from one platform to another during runtime. And (iii.) will provision low

latency handoffs between access networks for uninterrupted network connectivity with

clouds.

1.2 Research Motivation
The research in this thesis aims at developing a Mobile Cloud Computing (MCC) sys-

tem to extend the limited resources of mobile devices. Following are two scenarios that

illustrate some benefits of an MCC system.

Scenario 1: A person playing a game on his mobile phone, within two hours the phone

will be hot, and run out of battery. Now imagine the scenario where the application

running on the mobile phone get migrates to a near by cloud. thereby utilizing resources

of the cloud and streaming the game to the phone instead of running it on the phone

itself . This process of application migration can assist in prolonging the mobile battery

life time and enhance user experience.

Scenario 2: Consider, a more complex scenario, the person is playing the same game

on his/her mobile phone while roaming in the university campus, but he/she is on the

move to university (from home). The phone is connected to the Internet through 4G

network, and don’t have a ”good” access to any cloud (high delay or limited through-

put). The game will keep running on the mobile phone, but when he/she reaches to the

campus, the phone will detects and connects to campus’s WiFI network (now the phone

has a ”good” access to a cloud) and migrate the game to campus’s cloud utilizing the

remote resources instead of draining its own.

1.3 Research Challenges
The vision of Mobile Cloud Computing is to offload the computation to the cloud, en-

abling mobile devices to run several applications locally or on a cloud. Developing a MCC

system has three main challenges (i.) network and cloud selection, (ii.) live application

migration, and (iii.) mobility management.

1.3.1 Network and Cloud Selection

Network selection is a challenging task; mobile devices use wireless access networks to

utilize remote resources, and the characteristics of a network (e.g. delay and through-
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put) affect the performance of the applications running on the cloud. However, the

performance of wireless access networks is unpredictable. For example, wireless access

networks have limited and shared bandwidth, and have an interference prone nature.

Further, wireless access networks are heterogeneous in term of technology (e.g. 4G and

WiFI), where each technology suits specific demands. Thus network selection is time,

location, and demand dependent. And the challenge is, how to select the best access

network and cloud to get the best performance of the offloaded computation. The cloud

has similar characteristics to wireless access networks. The shared and heterogeneous

resources make it unpractical to apply static rules for network and cloud selection. To

conclude, the pervasive and heterogeneous nature of networks and clouds dictate the need

for dynamic network and cloud selection rules based on time, location, available remote

resources, and application requirements.

1.3.2 Application Migration

To extend the resources of mobile devices, the applications need to be migrated from

mobile devices to the cloud [3, 2]. However, mobile devices and clouds may use differ-

ent Operating Systems (OSs) and hardware architectures. Therefore, applications may

not be portable across these platforms. This problem is further complicated considering

live application migration requirement. Live application migration is moving an appli-

cation from one platform to another during runtime. In other words, the application

keeps its state while migrating among platforms. The complexity is due to the fact that

application’s state is scattered within the OS. For example, in Input/Output buffers,

application’s sockets and memory pages. Extracting the state and injecting it back to

another OS is not implemented in any standard OS. By standard we mean a off the shelf

OS not special purpose OS (e.g. a cluster or datacenter OS). To achieve live application

migration we can either build applications from ground up to support it or use an OS

level tool to enable today’s application to live migrate. Preserving applications state at

the OS level will allow us to reuse all of the available applications instead of building

special purpose applications which support live application migration.

1.3.3 Mobility Management

Terminal mobility is ” The function of allowing a mobile node to change its point of

attachment to the network, without interrupting IP packet delivery to/from that node

”[4]. Maintaining a connection (i.e. IP packet delivery) while a mobile device is roaming

in HANs or the application is live migrating in clouds is challenging. IPv4 was not

designed with mobility management in mind. The main issue is that IP protocol couples

the identity and location by a single identifier (i.e. IP address). Changing the point

of attachment or migrating an application from one place to another must address this

challenge.
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1.4 Research Contribution
In this thesis, we aim to develop an MCC system that enables application migration

while the users roam in HANs. Our proposed system for proactive application migration

in mobile cloud computing or APOLLO efficiently selects the best cloud and network

based on stochastic conditions such as cloud workloads, network delay and throughout

to provision applications while the users are on-the-move.

Our key contributions in this thesis are as follows:

• We propose, develop and validate APOLLO - a system for proactive application

migration in mobile cloud computing. APOLLO incorporates crucial functionality

such as application migration, network-and-cloud selection, and mobility manage-

ment;

• We propose, develop, and validate a mechanism for network-and-cloud selection

based on Reinforcement Learning. The MN uses this mechanism to proactively

select the combination of network-and-cloud for efficient application migration in

stochastic network-and-cloud conditions; and

• We propose and validate the usage of Linux containers to facilitate application

migration

1.5 Organization of the Thesis
The thesis is organized into five chapters:

• Chapter 2: illustrates MCC’s building blocks. It provides an in-depth discussion

of Virtualization, Heterogeneous Access Networks, and IP Mobility. Further, it

highlights the state of the art in MCC’s building blocks.

• Chapter 3: presents the architecture of our APOLLO system. It describes the

system’s components giving a detailed description of how we approached Network

and cloud selection, Application mobility, and IP mobility.

• Chapter 4: validates and tests tow components of APOLLO system. It presents

the reinforcement learning implementation and tests. Further, it describes the

application migration test bed and tests results.

• Chapter 5: presents our conclusion, lessons learned during this thesis, and finally

it lists the future work.



CHAPTER 2

BACKGROUND AND RELATED
WORK

Mobile Cloud Computing (MCC) Figure 2.1, is an emerging computing paradigm that

aims to utilize resources and services of the cloud to overcome the resource scarceness

of Mobile Nodes (MNs). MCC incorporates the cloud computing, mobile computing

and HANs to provide MNs with virtually unlimited resources [2]. MCC offloads data

processing and storage from MNs to the cloud, increasing the storage capacity and pro-

cessing power of MNs, in MCC The MN acts as a smart terminal connecting to the

cloud over HANs[3]. This chapter illustrates MCC building blocks i.e. Virtualization,

Heterogeneous Access Networks, and Mobility. Furthermore, it outlines the state of art

technologies in each of the aforementioned domains.

Figure 2.1: Cloud Computing[5].

5
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2.1 The Relation between Hardware and Software
To understand the relation between hardware and software we have to go back in time to

1960s. Looking at computing evolution we see that computing has started with ”dumb”

terminals sharing a handful of resources, then evolved to self-contained units (PC), and

eventually evolved to smart terminals sharing virtually unlimited resources[6]. Early com-

puters were massive and expensive; IBM System/360 Model 25 occupied several rooms

and cost 253.000$ in 1968 [7]. Therefore, machine time was expensive, and a handful

of computers ever existed (by 1965 there were 20.000 computers in the world) [8]. The

solution was to develop time-sharing platforms, where several users use ”dumb” terminal

devices to access a shared resources (e.g. TSS/360 OS running on System/360 Model 67)

[9]. Later on, breakthroughs in semiconductors technology (i.e. size and cost) and the

emergence of integrated circuits have paved the way for Personal Computer (PC) era [10].

During the PC era, the paradigm was a PC for every user, and software were built to

run in self-contained units [11]. Software built to run in self-contained units was the de

facto paradigm for stationarity and semi-stationary devices (i.e. Laptops) due to, i. the

scarceness of access networks making it unpractical to access remote resources, and ii. to

the fact that you can always get a bigger more powerful device. However, Self-contained

units model is not applicable to mobile devices. A Key difference between mobile and

stationary devices is resource limitations; mobile devices are resource constrained while

stationary devices are not. This difference is due to the combination of three factors, i.

mobile devices rely on an inefficient power source (batteries have low energy density), ii.

Silicon based CPUs generate heat to compute, and iii. mobile devices have to be portable

(i.e. small in size). Silicon based ICs have a direct relation between the generated heat

and computing (computation produces heat), this is the key to the limited computational

power of mobile devices (small surface area to dissipate the heat).

Today, The situation is the opposite of early computing days. The sheer number of com-

puters (servers), and the widespread of access networks facilitate new solutions, where

one user utilize resources of several remote servers. At this point Mobile Cloud Com-

puting (MCC) comes into the picture, by offloading the computation to the cloud, MCC

solves the resource scarceness of mobile devices. In the next section we illustrates the

basics of Cloud Computing.

2.2 Cloud Computing
Cloud computing is defined according to the National Institute of Standards and Tech-

nology (NIST) [1] as ” Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned
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and released with minimal management effort or service provider interaction. This cloud

model is composed of five essential characteristics, three service models, and four deploy-

ment models ”.

Figure 2.2: Cloud service models.

Essential Characteristics: according to [1], the cloud’s five characteristics are

• On-demand self-service automatic provisioning of consumers needs such as com-

putation capabilities, storage and network bandwidth without any human interven-

tion.

• Broad network access the resources must be accessible through the network

using standard networking protocols.

• Resource pooling resources have to be pooled to serve multiple consumers; the

customers should be able to dynamically use and release different resources.

• Rapid elasticity resource provisioning should be elastic, and in many cases auto-

matic (e.g. auto scaling)

• Measured service the consumers can utilize provider resources based on a pay-

per-use paradigm, with the ability to monitor utilized resources status (e.g. CPU

utilization)

Service Model: service model figure 2.2 outline providers and consumers responsibilities

• Infrastructure as a Service (SaaS) The consumer controls the fundamental

computing resources such as storage, processing and some networking elements.

For example, a firewall in front of consumer’s service, or to install an arbitrary

operating system on the hardware.
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• Platform as a Service (PaaS) In PaaS the degree of abstraction is higher, the

provider is responsible for managing the IaaS, while the consumers rule is to deploy

their applications on top of the platform.

• Software as a Service (SaaS) One more abstraction layer, the provider manages

the IaaS and PaaS and deploys an application on top, giving consumers means to

access and use the application.

Deployment Models: deployment models outline cloud owners and consumers

• Private cloud The cloud is used exclusively by a single organization, multiple

consumers. Private Cloud is owned and managed by the organization itself, a third

party or a combination of both.

• Community cloud The cloud is used exclusively by multiple consumers who share

the same interest such as security or availability. Community Cloud is owned and

managed by the organization itself, a third party or a combination of both.

• Public cloud The cloud is owned, managed and maintained by a provider, and

the cloud is public to use for all consumers.

• Hybrid cloud any combination of the types above.

The definition, characteristics and deployment models clearly state the need to access

a pool of isolated shared resources, which arise many challenges for the providers and

concerns for consumers. On the one hand, the providers have to find a method to man-

age their resources efficiently, sharing the available physical resources among as many

consumers as possible, taking into consideration that each customer gets what he paid

for. However, the clients are concerned the most about their data security. The main

technology which addresses these challenges is Virtualization.

2.3 Virtualization
Resource Virtualization is; using an additional software layer on top of an underlying

system, this extra layer provides abstractions in the form of multiple instances of the

underlying systems [12]. Virtualization addresses the challenges of, deploying applica-

tions as manageable units, resource management, resource control, multi-tenancy, and

security. This is achieved by providing isolated virtual fundamental computing resources.

Resource control specifies what resources from provider’s pool are accessible by a con-

sumer [13]. Memory and compute power are common criteria for resource control, which

assure that a workload is constrained to an exact amount of memory and execution time.

However, resource control is a secondary concern comparing to functional and security

isolation, where a given two workloads cannot access each others data, or effect execution
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correctness [13].

The main two methods to provide isolation are hardware level Virtualization and system

level Virtualization, both of which tackle security and resource management challenges.

Hardware level Virtualization provides Virtual Machines (VMs); a VM can be considered

as a real machine, where we install an Operating System (OS), and install applications on

top of the OS. On the other hand, system level Virtualization provides containers, where

we install an application in a container; and deploy the container as a self-contained

application on a shared operating system [14].

(a) Hosted hypervisor. (b) Bare metal.

Figure 2.3: Hardware Virtualization.

2.3.1 Hardware Level Virtualization

Hardware level Virtualization utilizes hypervisors, figure 2.3 shows two types of hyper-

visors, bare-metal and hosted. Using hypervisors, the providers can meet the cloud

requirement, but using a complete operating system as a unit of deployments is expen-

sive, in term of memory, storage and boot time. This is where system level Virtualization

shines [15].

2.3.2 Operating System (OS) Level Virtualization

OS-level Virtualization is a lightweight alternative to hypervisors; it achieves isolation

throw introducing virtual instances of the user-space [12]. The services/applications share

the same underlying operating system, but each has an isolated view of that operating

system. Figure 2.4 shows the difference between hardware level and OS-level Virtual-

ization. In hardware level Virtualization, the unit of abstraction is a hardware (CPU,
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memory, NIC, ...), while the unit of abstraction in OS-level Virtualization is an OS [12].

(a) Operating System virtualization. (b) Hardware Virtualization.

Figure 2.4: Comparison between Hardware Virtualization and Operating System virtu-

alization.

2.3.3 OS level Virtualization in Linux

Container-based Virtualization is an implementation of OS level virtualization concept;

it is more efficient than VMs in term of resource usage, where all the containers share

the same kernel [13]. Container-based Virtualization is implemented using Linux kernel

namespaces and Control groups (Cgroups) features. Linux kernel namespaces allows

different applications to have an isolated view of the underlying system, it provides

new instances of global namespaces (e.g. pid) for each container giving the illusion

that the application is running on its own OS [12, 16]. Cgroups is used to constrain

application usage of the physical resources. Linux Container (LXC) combines namespaces

and Cgroups functionalities to tie up an application and its dependencies into a virtual

container. This container can run almost on any Linux distribution, providing a near

native Linux environment for the applications [15].

Linux namespaces

One of the main drives behind implementing namespaces is to facilitate moving an appli-

cation with its saved state from one machine and restore it on another machine. Saving

the application’s state means, saving all of the global resources which the application uses

such as PIDs and SYS V IPC identifiers. We cannot assure that, for example, a process

on the new machine does not have the same PID of the saved application [16]. names-

paces solves this dilemma. Currently, there are six different namespaces implemented in
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Linux kernel, each of them abstracts a global system resource. Processes which belong

to an instance of namespaces has no view on the global resource of that namespace [17].

• PID namespaces isolates the PID space. In the simplest form, processes be-

longing to different PID namespaces can have the same PID number, one of the

main advantages of using PID namespaces is that each PID namespaces can have

its own. init process (PID 1) and we can preserve the processes PID regardless of

where the processes is running.

• Mount namespaces provides an isolated view for processes on the file system

hierarchy.

• UTS namespaces isolates nodename and domainname where each group of pro-

cesses (container) can have a different hostname and NIS domain name.

• Network namespaces provides an isolated networking environment including a

separate networking devices, IPs, routing table and so on.

• User namespaces provides an isolated user and group id namespace.

• IPC namespaces isolates System V IPC and POSIX

• message queues each container gets a separate messaging queue space.

The processes running in one of the aforementioned namespaces have two identifiers; one

is global (used by the host kernel), and one is local (used inside the namespace). This

allows us to create a process with root privileges inside a container (user ID of 0) while

has a restricted outside that container [17].

2.3.4 Linux Containers (LXC)

Linux kernel supports system level Virtualization throw a number of containment fea-

tures. Linux Container (LXC) is a tool released in kernel 2.6.24 that uses Linux kernel

containment features and provides a powerful API to create an isolated run environment

for processes. LXC uses namespaces, Cgroups, Apparmor, SELinux, secure computing

mode (seccomp) and Chroot to create a container [18, 19].

• namespaces allows creating an isolated view of the OS view, each process in Linux

has six namespaces(net, pid, user, mnt, uts and ipc) and using namespace we create

a separate instance for each process from these global namespaces [13, 15].

• Cgroups control container’s usage of system resources, Cgroups manages CPU,

memory and I/O for each container [15].

• Apparmor and SELinux are used to restrict application’s permissions such as

network access and write/read permissions [20].
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Figure 2.5: LXC in Linux architecture.

• seccomp is a security feature in Linux kernel, sand-boxing a process using seccomp

limits the process to 4 system calls read(), write(), exit(), and sigreturn() [21].

• Chroot using Chroot we can change the root directory to a certain process and its

children, changing the root directory puts a running process in a jail restricting its

access to any commands or files outside its own root directory[22].

2.3.5 LXD Containers

LXD is a container hypervisor developed to simplify and extend the uses of LXC. LXD has

two main components a command line client (LXC) and a system daemon (LXD). The

daemon exposes a REST API enabling the command line client to control it locally or over

a network[23]. LXD support live container migration by utilizing Checkpoint/Restore In

Userspace library (CRIU).

From LXD’s documentation [24] the main characteristics of LXD.

• Running environment

– Architecture LXD run almost on any architecture that are supported by

Linux kernel and Go programming language

– Kernel Requirements
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∗ Kernel 3.13 and higher

∗ namespaces (pid, net, uts, ipc and mount)

∗ cGroups (blkio, cpuset, devices, memory, pids and net prio)

∗ seccomp

∗ LXC 1.1.5 or higher

∗ CRIU for live migration

• Features:

– Configuration database : Rather than putting containers’ configurations

within each container’s directory, LXD has a database to store the configura-

tions. This helps to scale easily. For example, if we asked an LXD daemon

what container are using eth0 interface, LXD will look up its database and

give us the answer quickly. If the configurations are stored in containers’ di-

rectories, LXD has to iterate throw all of them, load the configurations and

look what network interface they use.

– Image based : LXD is image based; containers start their life from an image.

Images are kept in a built-in image store, where we can set the images to auto-

update from an online store. The built in image-store allows us to publish our

own images and make them available for public or private use.

– Secure remote communication : LXD uses HTTPS to communicate with

LXD daemon, with minimum TLS 1.2 and 4096 bit RSA.

– Clean and crisp API all the communication between LXD daemon and

client (LXC or other) is done using JSON over HTTPS.

– Storage backend LXD support different storage backends for storing con-

tainers and images (e.g. plain dirs, Btrfs, ZFS, and LVM).

LXD Live Migration

LXD support live container migration, figure 2.6 two nodes (source and sink). The source

node setup the operation and the sink node pull the container. The live migration uses

CRIU, using CRIU we can checkpoint a running process, dump its state to a collection

of files and restore it later on the same machine or sending the file to another machine

and restore it[25]. The migration uses three logical channels [24].

1. Control stream channel: this channel carries information that describes the con-

tainer, such as profile and configurations. Furthermore, it negotiates protocols used

on CRIU and filesystem channels.

2. CRIU images stream channel: carry CRIU images, which hold the container state.

Currently, LXD uses stop the world method, in future, iterative, incremental trans-

fer using CRIU p.haul protocol is going to be implemented.
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Figure 2.6: LXD live migration using CRIU.

3. Filesystem stream channel: carry container’s filesystem, the protocol used depends

on negotiation result from the control channel, it will use LVM, btrfs, ZFS if both

hosts support it or rsync between incompatible hosts.

2.4 Mobility Management in Heterogeneous Access Net-
works

Access Networks (ANs) connect a user to a network. Figure 2.7 compare modern wireless

access technologies in term of range and bandwidth where each technology has its ad-

vantages and drawbacks. Comparing LTE to WiFI, LTE has a longer range, but LTE’s

interface consumes more power to transfer the same amount data [26, 27]. Furthermore,

LTE providers charge per data unit while in most cases WiFI access points are connected

to a monthly base charging plan. These difference and more, are the main reason behind

the heterogeneity of wireless access networks. Each network performs the best in a par-

ticular situation and for specific demands. Thus MNs today are equipped with several

wireless interfaces (e.g. WiFI, WiMAX, 3G), The MN uses these interfaces to connect

to an IP network. The MN can switch among the interfaces, enabling terminal mobility.

Terminal mobility is defined according to [4] by ” The function of allowing a mobile

node to change its point of attachment to the network, without interrupting IP packet

delivery to/from that node ”. To achieve mobility, a MN performs a handoff. Handoff is

” The process by which an active MN changes its point of attachment to the network,

or when such a change is attempted ”[4]. There are two types of handoff, horizontal

handoff, and vertical handoff. A horizontal handoff occurs when a mobile node moves

from one station to another within the same technology, for example, a MN moves from
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one HSDPA base station to another. On the other hand, a vertical handoff occurs when

a mobile nodes moves from one technology to another (e.g. WiMAX to HSDPA) [28].

Maintaining a connection (IP packet delivery) to/from MN while the MN roams across

HANs (perform Vertical handoff) is challenging, to understand the challenges we have to

understand mobility in IP networks.

Figure 2.7: Wireless Technologies [29]

.

2.4.1 Mobility in IP Networks

To move data from node A to node B, several subtasks are to be performed. Addresses

for A and B have to be set, along with means to map human-readable addresses to

machine addresses. A route between A and B must be determined; the data has to be

packetized into chunks, and the receiver has to be able to put the data back in order. Both

sides have to ensure that data is not corrupted or compromised and to control sending

rates not to overwhelm any node across the route with data. These tasks are segregated

among protocols arranged in what we know as TCP/IP protocol stack. For example,

node-to-node communication is handled by link layer protocols, while global routing and

addressing are IP protocol’s duty [30]. The fundamental problem in IP mobility is the

bind between location (routing related) and identity (authentication related) with one

identifier i.e. the IP address. All mobility protocols aim at breaking the bond between

location and identity. Each protocol has a slightly different approach providing three
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main entities which break this bind [31].

1. Identifier: stable identity for a MN.

2. Locator: a mean to reach the MN; usually, the locator is an IP address

3. Mapping: mapping between the Identifier and Locator.

Furthermore, mobility solutions are implemented in a different layer of the TCP/IP pro-

tocol stack; each solution is suitable for a particular application or scenario [28]. To

understand IP mobility, we outline some of IP mobility protocols, their applications, and

approaches to achieve mobility.

Columbia Protocol

This protocol was one of the early mobility protocols, developed to provide local mobility

in Columbia University campus in 1991. Each wireless cell has a Mobile Support Station

(MSS), which is the default access router for nodes in that wireless cell. The MN’s has

a fixed IP derived from a special IP prefix; MSS sends beacons to keeps track of the

MN in its wireless cell, MNs reply with a message containing its stable identifier and its

old MSS. The new MSS notify the old MSS that a MN has left the old cell[31, 32]. If a

corresponding node (CN) sends a packet to a MN, the packet goes to the CN’s MSS (MC),

If the MC has the MN in its table it will forward the data. Otherwise, MC broadcast

the query to all MSS and tunnels the data to the MSS, which has the MN[31, 32].

Virtual Internet Protocol (VIP)

VIP has two main entities, a home network where the mapping occur and two IP addresses

for a MN. The MN IPs are a virtual IP address (identifier) and a regular IP address

(locator). The Identifier is fixed and can be used to facilitate the use of TCP. This

protocol modifies the IP header to carry the two addresses. CN sends the packets with

the virtual IP address as locator and identifier, the Home Network revives the packet and

forward it to the MN. To reduce triangular routing, the CN replace the locator address

with the current locator of the MN after receiving a message from the MN [31].

E2E and mSCTP

E2E and mSCTP are transport layer mobility protocols. E2E protocol gets its name

from its End to End (E2E) architecture; this protocol utilizes the DNS service to provide

a stable domain for each MN (identifier). A MN obtains an IP address from its current

access router and sends update using dynamic DNS to update the mapping between its

domain name and IP address [31]. CN query the DNS to get MN IP address; when

the session starts, the MN will be responsible for updating its current location to the

CN. mobile Stream Transmission Protocol (mSCTP) is similar to E2E where it utilizes
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dynamic DNS for mapping and allow both parties to add/delete IP address. mSCTP

is defined as SCTP and its ADDIP extension. ADDIP extension enables endpoints to

add or remove IP addresses from the SCTP association, and to change the primary IP

addresses used by SCTP association [33].

IKEv2 Mobility and Multihoming Protocol (MOBIKE)

MOBIKE is an extension for IKEv2; it supports mobility and multihoming. IKEv2 pro-

vides us with an end to end secure tunnel, and MOBIKE extension allows the MN to keep

current Security Association (SA) and IKE while moving in an IP network. This protocol

allows both parties to have multiple IP addresses. The decision making in MOBIKE is

asymmetry, only one peer is responsible for deciding which address to use. Furthermore,

MOBIKE supports bidirectional and unidirectional address [34]. Kivinen and Tschofenig

show in [35] a scenario where MOBIKE support two party mobility. IKEv2 usage is lim-

ited to Virtual Private Network (VPN), the end to end circuit service have not been

widely adopted. Yin and Wang in [36] build an application aware IPsec policy system.

Furthermore, Kivinen and Tschofenig show in [35] a scenario where MOBIKE support

two parties mobility.

Host Identity Protocol (HIP)

This protocol uses a cryptographic public key as an identifier and uses IP address for

routing only. The public key is used as the domain name, where a CN can query a

Rendezvous Server (RVS) that keeps the mapping between public key and IP address[31].

2.5 Mobile IP (MIP)
MIP is a layer three mobility protocol. Each MN has a Home Agent (HA), the HA resides

at MN’s home network providing a Home Address (HoA). The MN obtain another IP

address from its access router called Care of Address (CoA). The MN sends a Binding

Update (BU) to its HA, the BU carry the CoA, and the HA keeps the mapping between

the identifier (i.e. HoA) and locator (i.e. CoA) [37]. In other words, the MN is reachable

throw a global address (HoA) regardless of its actual location. MIP incorporate many

entities [38, 28].

1. Mobile Node (MN): A movable device such as a mobile phone, has the ability to

access heterogeneous networks.

2. Home Network (HN): the home network where the HoA resides, correspondent

nodes reach the MN throw this global address.

3. Foreign Network(FN): Any network except the HN.
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4. Home Agent (HA): Is an application resides in home network’s router or a separate

device on the home network, the HA maintains a binding registry between HoA

and CoA.

5. Foreign Agent (FA): Only for IPv4, Is an application resides in foreign network’s

router or a separate device, the FA maintains a visitors table tracking the visitors

MNs.

6. Correspondent Node (CN): Any network node interested in reaching the MN.

2.5.1 MIP Working Mechanism

When a MN roams in a FN, the MIP mechanism has three main phases enabling MN to

be reachable[28]:

Agent Discovery: Home and Foreign Agent (HA, FA) advertises their presence and ser-

vices using ICMP Router Discovery Protocol (IRDP). The Mobile Node (MN) listen to

the agents advertisements and obtain if it is on the home network or a foreign network.

The MN can send an agent solicitation to force any agent on the segment to replay with

an agent advertisement.Moreover, the foreign agent is designed to accept the solicitation

request even if the solicited node has an IP, which does not belong to the same network

address. In MIPv6 the MN obtain a CoA using Stateless Auto Configuration.

Registration: The MIP client at MN is configured with a shared key and the IP ad-

dress of its home agent. The MN form a MIP registration request, add it to its pending

list and send it to its home agent through the FA. The FA checks if the request is valid,

adds it to its pending list and send it to the HA. The HA checks if the registration request

is valid, creates a mobility binding, a routing entry for forwarding packets to the home

address, a tunnel to CoA and sends a registration reply to the MN through the FA. The

FA checks if the registration request is valid and exists in its pending list then it adds

the mobile node to its visitor list, creates a routing entry for forwarding packets to the

home address, creates a tunnel to the home agent and forward the registration reply to

the mobile node. The mobile node checks if the registration reply is valid and exists in its

pending list and sends all the packets to the FA. In MIPv6 there is no FA, the previous

steps are used to register, except the one related to the FA.

Tunneling: Data addressed to the mobile node are routed to the home network where

the HA intercept and route them through the tunnel to the MN.

2.5.2 MIP Extensions

MIP has many extension and enhancements which tackle some of its disadvantages like

triangle routing and improve the handoff time. Following is an outline of the most
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important extensions.

• Hierarchical Mobile IPv6 Mobility Management (HMIPv6): HMIPv6 is an exten-

sion for the MIP, where a Hierarchical mobility management is added to improve

local mobility. HMIPv6 adds a new mobility entity called Mobility Anchor Point

(MAP), the MAP acts as a local home agent providing mobility within a local

subnet. HMIP decreases the number of BU to the HA since MAP handles local

mobility [39].

• Multi-homed Mobile IP (M-MIP): M-MIP supports MIP soft handoff, where the

MN is connected to several networks simultaneously. On the other hand, hard

handoff; the MN disconnects from a network and then connects to the new net-

work. The MN gets a different CoA on each interface. M-MIP enables the MN

to send/receive data using both of its CoA without the need to do a hard handoff

[28, 40].

• Route Optimization in MIP: The base MIP enables the MN to move while keeping

the connection to CNs. The connectivity is maintained by using the HA as an

anchor point; all the data is tunneled through the HA, which is called triangle

routing. Route Optimization is to have a direct connection between the MN and

CNs. To achieve Route Optimization, a caching capability is added to all nodes

(including CN); allowing nodes to cache BUs [41].

• Proxy Mobile IP (PMIP): This protocol support mobility using the network itself,

the mobility support is transparent to the MN. PIMP introduces two mobility

management nodes, Local Mobility Anchor (LMA) and Mobility Access Gateway

(MAG). LMA acts as a home agent and assigns home network prefix to MNs. This

prefix is used as the MN identifier, the MAG monitor the location of the MN within

the PMIP domain, and sends binding updates to LMA[42].

2.6 M2C2 System
Ubiquitous constrained mobile devices, heterogeneous access networks (HANs) and de-

mands of modern mobile applications in term of computation and storage are the main

factors behind developing M2C2 system [43]. The system is shown in figure 2.8 ad-

dresses mobility by implementing Multi-homed Mobile IP(M-MIP) and addresses the

constrained nature of mobile devices by offloading the computation to Mobile Comput-

ing Cloud (MCC). M-MIP works by hiding the Mobile Node (MN) behind an Anchor

Point (AP) giving the MN the ability to handoff between different networks without

breaking its session with the outside world (i.e. used cloud). Selecting the best network

to reach the AP and offloading the computation to the cloud, is achieved by cooperation

of several entities. The system utilizes M-MIP to passive probe and chooses the best net-

work (MN-AP), Cloud Probing Service (CPS) to probe the available clouds and, Cloud
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Ranking Service (CRS) to use the information gathered by CPS and rank the available

clouds[43].

Figure 2.8: M2C2: A mobility management system [43].

2.7 Reinforcement Learning
To understand reinforcement learning we have to follow the chain of ideas which have

lead to reinforcement learning. In essence, it is our need for mathematical models to

predict physical phenomenon. Predicting a physical phenomenon is an easy task when

we want to predict a square’s area, raise the square’s side length to the power of two, and

congratulation you got the area (A = l2). For the same side length, the area of a square

is always going to be the same. Because, the square’s area function is a deterministic

function, where giving the same initial state we can predict with absolute certainty the

outcome state (value). However, the physical world is not simple or kind; we cannot

gather all the needed information to model everything using deterministic functions.

We can predict the outcome of a coin flip with certainty, if and only if we take in

consideration a huge number of variables. The coin’s original balance, air temperature,

humidity, the flipping force, the exact gravitational forces and so on; this is unpractical

and complicated. Here the probability theory comes for rescue; we use a probability
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function which says, it is a 50% chance to get head or tail. This simple idea allows us to

model complicated physical phenomena by a simple mathematical model. It is a trade-off

between accuracy and complexity. We notate the expected outcome of a coin flip with a

variable. And since we cannot predict the variable’s value, we call it a random (stochastic)

variable. Each random variable has a result space which is referred to as a distribution.

In the case of a coin flip is a Binomial distribution {head, tail}. In case of a humans’

height is a Gaussian distribution over the range {shortesthuman, longesthuman}.

The next step is to understand the stochastic process, which is a collection of random

variables used to model a system. An example of a stochastic process is Markov chain.

Markov chain has a state space and moves through this space according to a transition

matrix. Markov chain is used to model systems where system’s evolution can take more

than one way. A distinct feature of Markov chain is Markov property where the proba-

bility distribution of the next state depends on the current state only.

We are almost there now, just Markov Decision Process (MDP). If we model a system

using Markov chain, and we have the ability to make decisions, this means we have the

power to change the transition matrix. The system’s evolution is affected by our choices

and system’s nature (context) itself. We use (MDP) to model such a system. The core

problem of MDP is to transfer MDP into a Markov chain, in other words, to figure out

the transition matrix. From the transition matrix, we create policies which maximize the

overall reward. The policy is a deterministic function maps states to actions π(S → A).

MDP has a state space S which include all the possible states of the system. In each

s ∈ S the decision maker has a set of possible actions a ∈ A to take. The process moves

from s → s̀ and gives the decision make a reward Ra(s, s̀). The probability of moving

from state s→ s̀ is giving by the Pa(s, s̀).

If we do not have the transition matrix or the reward function of the Markov deci-

sion process, it becomes a reinforcement learning problem. Reinforcement learning is

defined according to [44] ” is learning what to do, how to map situation to action so as

to maximize a numerical reward signal ”. In reinforcement learning we have an agent

and an environment, the agent evaluates its action (delayed rewards) instead of taken

the right action. We can identify three main elements in reinforcement learning Policy,

Reward Function and Value Function [44].

Policy: We can compare policies to stimulus-response in psychology, for each state

the agent receives from the environment, the agent response with an appropriate action.

Reward Function: In biology, actions are rewarded by pain, pleasure, and stress. We

map the same concept to reinforcement learning. A numerical value rewards Agent’s ac-
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tions; the reward function calculates this value. The agent seeks to maximize the reward

value [44].

Value Function: While reward function evaluates each action immediately, value func-

tion specifies what is good or bad in the long run. Value function, represent the total

amount of rewards the agents is expected to gain starting from a specific state and acting

optimally [44]. One of the simple most accurate analogies to explain the value function

is writing, while it is frustrating and time-consuming to put your thoughts on paper, the

long-term reward is the clarity you get after writing.

2.8 Summary
This chapter illustrated Mobile Cloud Computing (MCC) and its building blocks. It

presented an in-depth view of Virtualization, Heterogeneous Access Networks (HANs),

and IP mobility. Further, it presented and discussed the challenges of network and cloud

selection, IP mobility management, and application mobility. Furthermore, It outlined

the state of art technologies in MCC’s building blocks (i.e. Virtualization, HANs, and

IP mobility).



CHAPTER 3

APOLLO: A SYSTEM FOR
PROACTIVE APPLICATION

MIGRATION IN MCC

In this chapter, we present the architecture of our APOLLO system. APOLLO is mo-

tivated by M2C2 system [43]. M2C2 system utilizes M-MIP, Cloud Probing Service

(CPS) and Cloud Ranking Service (CRS) to achieve two goals, (i) mobility in HANs and

(ii) offloading computation to the cloud. However, M2C2 does not consider application

migration and the challenge of learning from stochastic network-and-cloud conditions.

Our proposed system APOLLO incorporates three components to overcome the resource

constrained nature of mobile devices and to overcome the limitations of M2C2. These

components are: (i) a reinforcement learning agent for Network − Cloud selection, (ii)

Linux containers to mobilize applications, and (iii) route optimized M-MIP for IP mo-

bility management. Figure 3.1 shows the architecture of APOLLO. In the next section,

we present APOLLO’s architecture.

3.1 Architecture
The system’s architecture is shown in Figure 3.1. The system main components are:

1. Mobile Node (MN): The Mobile Node holds the Network−Cloud selection agent.

The agent will decide to run applications on the MN itself or a cloud. When a user

starts an application. The agent will live-migrate the application if the platform

running the application does not satisfy the application requirements anymore.

2. Container as a Service (CaaS): We consider public and local clouds that can run

Linux container as Container as a Service (CaaS), the agent will offload the con-

tainers to the cloud based on applications demands.

23
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3. M-MIP: This protocol is used for IP mobility; the Home Agent is used for authen-

tication, and BU/BA messages are used for passive cloud probing.

In the next sections we describe in details how APOLLO handles IP Mobility, Application

Migration, and network-and-cloud selection.

Figure 3.1: APOLLO’s architecture.

3.1.1 IP Mobility

Ch2 survey some of IP mobility protocols, a fundamental difference among those protocols

is; the TCP/IP implantation layer. Network layer mobility protocols exploit the thin

waist of the TCP/IP protocol stack; it is the strategic place where a mobility protocol can

serve every higher layer. However, this advantage comes at a price, for example, Mobile IP

(MIP) has triangle routing, and is network depended i.e. Multihomed Mobile IP M-MIP

must have a HA [30]. The research community has addressed the aforementioned issues,

Perkins and Johnson in [41] introduce route optimization scheme for MIP. Moreover,

HIMIPv6 uses Local Mobility Anchor (MAP) to improve local mobility and reduce HA’s

overhead [39]. In APOLLO, we propose using M-MIP, this choice was built on the

following criteria:

• Multi-homing: Ahlund and Zaslavsky in [40] describe Multihomed Mobile IP, fa-

cilitating soft-handoffs among MN’s interfaces.
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• Authentication and network probing: The home agent (HA) handles the MN’s

mobility and authenticates the MN. The binding update (BU) and binding ac-

knowledgment (BA) packets sent between the HA and MN can be used as probe

packets to probe the networks. However, for end-to-end probing, we used simi-

lar BU/BA message pairs between the correspondent node (CN) and the MN as

described by Perkins and Johnson in [41].

3.1.2 Application Migration

Today’s mobile device are self contained units, where applications use the device resources

to compute. This traditional device-application association drains the limited resources

of mobile devices. Live migration is moving an application from one platform to another

during runtime. Live-migration eliminates the constraints associated with mobile devices

in term of computation and storage [45, 46]. However, migrating an application from

one platform to another is not an easy task. As discussed in Ch 2, the common method

to migrate applications is to build a Virtual Machine (VM), setup the application, and

move the entire VM to another host. This comes at the expense of performance (i.e.

Virtualization overhead) and size (a whole operating system)[13]. On the other hand,

Linux Containers provides a minimal overhead in term of performance and size.

The vision is to use containerized applications to break the device-application associ-

ation. Containers provide a standard application deployment unit, where containers can

run on a MN, local cloud or public cloud. To illustrate how containers are used we give

a practical example i.e. the agent’s test during this work. The tests were done using the

developer laptop, the test is CPU intensive and the average time for each test was 4 hours.

Using the proposed system, we would have been able to setup the test, migrate the con-

tainer to a CaaS, run the test and migrate the container back to the developer’s laptop.

APOLLO uses LXD containers, and this choice was based on the following criteria

• Security: Some container Implementations such as Docker has the option to run

privileged containers, and this is a security risk. Any code running in a privileged

container can act as root outside the container boundaries. The operator must

pay special attention and fin tune each container, run in ”non-privileged” and

use security solution such as SELinux or AppArmor [47]. Limiting the container

privileges will restrict the number of applications which can be containerized. On

the other hand, LXD containers act as a hypervisor, running a privileged container

inside a LXD container is like running an application inside a Virtual Machine[23].

• Live migration: Decoupling the device-application association will provision un-

limited on-demand resources to the MN.

• Compatibility: LXD containers can run many other container management ap-

plications (e.g. Docker, OpenVZ, Rocket) facilitating code reuse.
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3.1.3 Network and Cloud selection

So far we have a Mobile Node (MN) and a mobile application, but we do not have a

decision mechanism to decide where to run the application and which network to be used

by the MN. There is many decision methods (e.g. static rules, offline learning, online

learning). We decided to use a Reinforcement Learning Agent, and this decision was

built on the following criteria:

• Proactive: Using a decision mechanism that produces a custom policy for each

user will allow proactive migrating of applications and handoff among networks.

Static rules already have a significant error margin (one policy for all users), and

this error margin will get bigger with proactive decisions.

• Custom policies: Wireless networks are unstable, and their performance is hard

to predict, the decision mechanism must produce custom policies for each user.

• Scalable : The decision mechanism will face the challenge of choosing the best

network for the MN and the best platform to run the application (e.g. on the MN

itself, Cloud 1, Cloud 2 .... ). The decision complexity is M · C. Where M is the

number of networks and C is the number of clouds.

Using reinforcement learning agent is a start, but what is a ”good” or a ”bad” network-

and-cloud? What are the variables the agent should look for? We evaluate each network-

and-cloud based on (i) End to End delay MN−Cloud and (ii) throughput MN−Cloud.

Delay and throughput are not the only variables to consider in our scenario, but this

decision is due the following reasons

• Thesis scope: Considering variables such as service cost, handoff cost, and battery

status are beyond the scope of this work.

• Relevance to our scenario: An IP network has numerous factors to measure its

performance, packet duplication, packet loss, packet reordering, jitter, and delay.

However, considering factors such as packet reordering are relevant to gauge the

performance of a routing protocol not to our scenario.

• Delay: End-to-End delay is the time between the execution of an action and the

end user perceive the result. Using End to End delay MN − Cloud network-and-

cloud state can be estimated. A high delay value is due to one of two reasons; the

used network is congested, or the used cloud is overloaded [48]. In both cases, we

get a good estimation of the network-and-cloud state, and we know that we should

switch/keep the Network − Cloud.

• Throughput: Delay by its own may not enough to decide where to run a an

application. Combining delay and throughput will allow us to run each application

on a platform that suits its specific needs [49].
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3.2 Network and Cloud Selection Agent
In the next sections we present details of the agent’s design. Starting with the model

formulation and reward function. Then we propose Explore and Learning functions to

improve the agent’s learning speed.

3.2.1 The Model Formulation

As we discussed in ch2; a Reinforcement learning problem has four components, time

epochs, state space, action space, and a reward function. We use notation described in

[50, 51] The agent’s design is shown in figure 3.2. The agent observes the environment,

learns from it and takes an action. Each action resolves in a reward which indicates how

”good” or ”bad” the agent’s decision was.

Figure 3.2: Q-learning agent design [28, 44].

Time epochs

The MN acquires information about the available network-and-cloud and takes a decision

at each time epoch. The sequence T = {1, 2, 3, ..., N} represents moments in time where

the agent interacts with the environment. N is a random variable denotes connection

termination time. Equation 3.1 denotes the time epochs.
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T = {1, 2, ..., N} (3.1)

T Time epochs.

N Termination time.

Action space

The agent interact with the environment to acquire information then take a decision,

each interaction is called a time epoch. At each time epoch, the agent has to make a

decision, whether to keep using the current network-and-cloud or not. The action space

is shown in equation 3.2.

A = {1, 2, ...,M} × {1, 2, ..., C} (3.2)

A Action space

M Available HANs

C Available clouds

State space

MDP state space is represented by flat or factored state representation. Flat state repre-

sentation simply gives each state an identity; it is a simple representation of a small state

space. Factored state representation uses a number of variables to represent the state;

it is more efficient in solving problems with a larger state space [52]. We represent our

state space S using factored state representation. For each s ∈ S, the state includes the

following information. End-to-end delay D and throughput TH for network-and-cloud

combinations. Equation 3.3 denotes the state space.

The state space values are quantized into multiples of a unit n, this way we decrease

the state space size and overcome the continuous nature of delay and bandwidth [53].

For example, if the delay MN-WiFI-Cloud1 = 11 ms, we quantize it to 20 ms, 18 ms to

20 ms and so on.

S = {1, 2, ...,M} × {1, 2, ..., C} ×DMC × THMC (3.3)

S State space.

M Available HANs.

C Available clouds.

DMC Delay (MN − Cloud).

THMC Throughput (MN − Cloud).
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3.2.2 Reward function

The random variables Yt ,Xt denote the decision and state of the agent at time epoch

t. The reward function r(Yt, Xt) reflects the state of network-and-cloud within time

interval (t, t + 1). The proposed reward function consists of three sub reward functions.

Given s ∈ S , a ∈ A we donate fd(s, a) , fth(s, a) and fg(s, a)as delay reward function,

throughput reward function and general reward function respectively. ωd, ωth, ωg is the

weight giving to the delay, throughput and the general of the state. where ωx ∈ {0, 1}.
Delay and throughput reward functions are related to the preference of the user and

application requirements. For example, a Voice Over IP application is affected the most

by delay and throughput a secondary factor, for such an application we set ωd higher

than ωth. The third reward function fg(s, a) Eq. 3.6 is derived from Eq. 3.4 and Eq. 3.5

by substituting LD and LTH with zero, UD and Uth with UG. In the case, that none of

the available networks and clouds meet the application’s requirements, this function is

used to choose the least worse network-and-cloud. Table 3.1 describe the used notation

in reward− function

fd(s, a) =


1, 0 < da < LD

(UD − da) / (UD − LD), LD < da < UD

0, da ≥ UD

(3.4)

fth(s, a) =


1, tha ≥ UTH

1− (UTH − tha)/(UTH − LTH) LTH < tha < UTH

0, tha ≤ LTH

(3.5)

fg(s, a) = (tha − da + UG)/(UG) (3.6)

r(s, a) = ωdfd(s, a) + ωthfth(s, a) + ωgfg(s, a) (3.7)

3.2.3 Q-learning

The Q-learning algorithm is shown in 3.8. The equation has two variable which alters

the behavior of the agent, Learning Rate(α) and Discount Factor (γ).

Q(s, a)← Q(s, a) + α [ r(s, a, st+1) + γ maxat+1Q(st+1, at+1)−Q(s, a) ] (3.8)

Learning Rate

The learning rate (α) ∈ {0, 1} effect the amount of learning the agent get from each

state-action. To reach converges in a stochastic environment the learning rate has to be

decreased over time [54], the convergence in this context means that during an episode

the maximum change in the Q-matrix is 0. We implemented a function which returns a

value tied to each state individually. The core concept of the function is, the agent will
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Table 3.1: reward function’s notation

Notation Description

fd(s, a) delay reward function for action a in state s

UD Maximum accepted delay by an application

LD Minimum accepted delay by an application

da Delay value at the used Netwok − Cloud
fth(s, a) throughput reward function for action a in state s

UTH Maximum accepted throughput by an application

LTH Minimum accepted throughput by an application

tha Throughput value at the used network-and-cloud

fg(s, a) general reward function for action a in state s

UG An arbitrary value, usually UD > 104

tha Throughput value at the used network-and-cloud

da Delay value at the used Netwok − Cloud
r(a, s) reward function

ωd Delay weight

ωth Throughput weight

ωg Throughput weight

learn a lot from the first visit to a particular state-action (α(s1,a1)1 = 1) and this value

will decay each time the agent visit the same state-action (α(s1,a1)2 = 0.98) . Equation

3.9 shows the discount factor function.

α(s,a)x = 1− {1
2
[1 + erf( (x−µ)

(σ
√
2)

]} (3.9)

s s state s ∈ S
a a action a ∈ A
x occurrence number of this state-action

Explore function

One of the distinct features of Q-learning is the ability to improve agent’s perception of

the world regardless its action’s quality. This ability is due to the separation between

actions’ reward and the Q-matrix, which represents its knowledge. In other words, the

agent can learn the optimal policy regardless of its actions quality. In a traditional im-

plementation of Q-learning agent, the agent has two separate modes namely exploration

mode and exploitation mode. In exploration mode, the agent takes random actions, eval-

uate this action and update its Q-matrix. Exploration mode aims to increase knowledge

of the agent. On the other hand, in Exploitation mode, the agent takes actions based on

its Q-matrix (its knowledge) to increase the sum of cumulative reward.
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This clear separation between exploration and exploitation adds complexity to real world

usage of agents. How long should we explore? When should we explore again and for

how long? These questions are hard to answer, and the answer depends on the each

environment the agent lives in.

To solve this problem we have to do two things. First, we combine exploration and

exploitation mode in on mode. We weight exploration versus exploitation by using a

value ε ∈ {0, 1}. Setting ε to 0.2 will make the agent explore 20% and exploit 80%. Sec-

ond, we have to improve the exploration part, instated of taking a random action a ∈ A
from a giving state s ∈ S; we track all the previously taking state− action and explore

a new action instead of the possibility of trying to learn from the same state − action.

Algorithm 1 shows the exploration function.

Algorithm 1 Explore function

1: procedure getAction(State, Epsilon)

2: qValues[] ← agent.getQ(State)

3: roll ← random.nextDouble()

4: if roll < Epsilon then

5: for int i = 0 to qValues.size() do

6: action ← qValues.getRandomAction()

7: if action.occurance() < constantValue then

8: return action

9: end if

10: end for

11: else

12: action ← qValues.getMaxQ().getAction()

13: end if

14: end procedure

3.3 Summary
This chapter presented APOLLO system. APOLLO addresses three challenges; IP Mo-

bility, Application Migration and network-and-cloud selection. We proposed solutions

to these challenges by utilizing M-MIP, Linux containers, and Reinforcement Learning

Agent respectively. Furthermore, we proposed using Explore and Learning Rate functions

to shorten the agent’s learning time.



CHAPTER 4

IMPLEMENTATION AND
EVALUATION

This chapter validates APOLLO system. APOLLO three main functionalities i. Applica-

tion Migration, ii. network-and-cloud selection agent, and iii. Mobility management. In

this chapter, we implemented and tested two separate components; the first component

addresses application migration by setting up and testing an application migration envi-

ronment. The second component addresses network-and-cloud selection by implementing

a network-and-cloud selection agent.

4.1 Applications Migration
As discussed in ch 3, we proposed the use of LXD containers to facilitate application mi-

gration. LXD live-migration is still under development. Furthermore, the feature lacks

documentation and experimentation. Therefore we did some tests, we set up a test bed

using Amazon m4.xlarge EC2 instances. The test aims at building a service, container-

izing it, and live-migrating the container to calculate the downtime of the service. The

test bed consists of eight instances, two in Ireland, two in Virginia, two in Mumbai and

two in Sydney. All the instances run Ubuntu 16.04 with a custom Linux 4.5 kernel com-

piled to support Checkpoint/Restore In Userspace (CRIU)1. The container is built from

Ubuntu 14.04 image, it runs a Java web server (the service), and the container’s size is

231 MB (Ubuntu 14.04 + Java 7 + the service). The web server has a counter which can

be acquired by sending a HTTP get request to < IP > /counter. This setup allows us

to calculate service downtime and to assure that the container is keeping the state i.e.

the counter resumes counting after the migration. Apache Jmeter [55] is used to send

HTTP get requests to the web server. Table 4.1 shows the test results of executing 49

application migrations among Amazon’s data centers.

1CRIU is a library that enable check point/restore of Linux processes.

32
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Table 4.1: LXD live migration test.

Zone Average migration time Average down time

Ireland - Virginia 32 sec 9 sec

Ireland - Mumbai 58 sec 13.6 sec

Ireland - Sydney 99 sec 24.5 sec

Ireland - Ireland 10 sec 2.8 sec

Virginia - Virginia 11.5 sec 2.8 sec

Mumbai - Mumbai 11.4 sec 2.6 sec

Sydney - Sydney 16.4 sec 3.8 sec

4.2 Network and Cloud Selection
To solve and validate the Reinforcement Learning problem proposed in 3.2. We imple-

mented a data generator and a Reinforcement Learning Agent. Due to time restrictions,

we did not collect real cloud statistics. Instead, we utilized the data generator to test

the Reinforcement Learning Agent’s implementation by simulating a cloud environment.

4.2.1 Data Generator

We used a Pareto-distributed data to simulate end to end delay [56], and Gaussian-

distributed data to estimate the bandwidth [57]. The Colt library [58] and Apache

Common Math library [59] are utilized to get a random variable with a Gaussian distri-

bution and a random variable with a Pareto distribution respectively. The abstract class

SampleGenerator class provides a shared code among distributions. GaussianGenerator

and ParetoGenerator classes extend SampleGenerator and provide distribution specific

parameters. To validate the libraries correctness, Fig. 4.1 shows 106 samples from a

Gaussian and Pareto variables.

Both distributions (i.e. Gaussian and Pareto) are continuous distributions, To utilize

the data generated from them, a rounding function shown in code block 4.1 is imple-

mented. For debugging simplicity the function rounds up the values instead of rounding

to the nearest value (i.e. rounding up and down). Furthermore, the rounding action

satisfies state quantization proposed in 3.2.1. After implementing a data source, we im-

plemented a DataGenerator which provides us with methods to setup a data generating

plane and feed the data to our agent. Code block 4.2 shows an example of Pareto data

generating plan.
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Figure 4.1: 106 samples rounded to 0.1 .

Listing 4.1: Rounding function

public static double round(double sample , double roundTo){

if(roundTo % 1 == 0){

// round to an integer

return Math.round(( sample+roundTo /2)/roundTo) * roundTo;

}else{

// round to a double

return Math.floor(sample/roundTo) * roundTo;

}}

4.2.2 Network and Cloud Selection Agent

BURLAP is a Java library based on Object Oriented Markov Decision Process (OO-

MDP) [60]. Implementing a Reinforcement learning agent using BURLAP is quite intu-

itive and inspired from the physical world.

In our physical world and over the course of history, we defined a number of attributes

which describe how our world works. For example, if we take the earth as our domain,
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Listing 4.2: Data generating plan.

// sample_number , scale , shape , roundTo

mG.addParetoPlan (500, 100, 5,10);

mG.addParetoPlan (200, 40 , 5,1 );

mG.addParetoPlan (100, 300, 6,5 );

mG.generate ();

we have a latitude and longitude which describe the location of an object. Latitude and

longitude are a domain attributes, and each object lives in that domain has to assign

values to these attributes describing its position (state) on the surface of the earth. The

domain has actions which apply to objects lives in that domain too. For example, we

define an action move north which applies to an object lives in the earth. In BURLAP

the process of creating a domain goes throw the following steps [61].

1. declare a domain-class (earth)

2. define the attributes which constructs this domain (e.g. latitude and longitude)

3. define object-class (objects) which will live in the domain (e.g. cars)

4. Assign the attributes to our object-class (a car has latitude and longitude)

5. define action applicable on this object-class (move north, move south ...)

6. instantiate the object-class to get an object (e.g. Bob’s car)

We have defined CloudWorld, this domain contains attributes describing its state and

has actions which are applicable to the object lives in it. Then we defined an agent lives

in CloudWorld and assigned attributes to the agent. Code block 4.3 contains a simplified

version of domain implementation.

4.2.3 Testing the Network and Cloud Selection Agent

To test and validate our implementation, we used the data as shown in Fig. 4.2. This

dataset contains delay and throughput values of two networks (WiFi, 4G) and two clouds

(Cloud1, Cloud2). Fig. 4.2 shows 1000 samples from one of our dataset (out of many),

the samples are taken on the X axis, each sample contains the delay and throughput

of four network-and-cloud. The first 800 samples has a clear division between what is

considered as ”good” and ”bad” (Network − Cloud) combination. For example, for

the first 200 samples, (WiFi − Cloud1) has the least delay and highest throughput.

Furthermore, in this dataset there are 100 points (between time 800 sec. to 900 sec.)

where all network-and-cloud combinations do not provide a ”good” delay or throughput.

These 100 sample points aim to test a more complex situation where there is no obvious
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Listing 4.3: Simplified domain implementation.

// a Single Agent Domain

SADomain domain = new SADomain ();

// an attribute of the domain (Delay -Network1 -Cloud1)

Attribute mD_N1_C1 = new Attribute(domain , D_N1_C1 , Type.INT);

// an agent lives in the cloud world

ObjectClass mAgentClass = new ObjectClass(domain , "agent");

// This domain attribute is an attribute of the agent class

mAgentClass.addAttribute(mD_N1_C1);

// add action to the domain

new Migrate(MIGRATE_TO_N1_C1 , domain , N1 ,C1);

(a) Delay (b) Throughput

Figure 4.2: Dataset to test the agent.

best network-and-cloud to use, i.e. delay and throughout values overlap significantly. In

our dataset, the delay values (that follow Pareto distribution) contain 50 distinct values

for each network-and-cloud (e.g. 50, 60, ... , 1200) ms, and the throughput values has 7

distinct values (e.g. 10, 20, ... , 70) Mbps for each network-and-cloud combination. The

agent consider the whole sample as one state, and the total state space is 15 · 109 states

(504 · 74). This data is used as an input to verify the agent’s behavior. However, before

running the test, we need to set a couple of variables and these variable alter the agent’s

learning behavior.

• Greedy Epsilon: This value sets the greedy behavior of the agent. For example

Epsilon= 0.2 → 20% of the decisions will be random, and the remaining 80% will
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be according to the Q-matrix.

• Learning Rate: Learning Rate determines to what extent the agent will weigh future

learning experiences against the previous ones [62].

• Discount Factor : determines the importance of future rewards [62].

Test methodology

As mentioned above the three variables which alter the learning behaviour of the agent are

Epsilon, Learning Rate, and Discount Factor. To get a better and practical understanding

of Q-learning, algorithm 2 was implemented. The test goes through all the possible

combination of Learning Rate, Discount Factor, Epsilon with a step of 0.1, we call each

combination a tuple. The algorithm runs tests on 113 tuples. However, to understand

the test shown in algorithm 2 and the results form the test we present some terminology.

• Learning: is the process in which the agent takes an action a ∈ A in a state s ∈ S
and memorizes how ”good” or ”bad” the action was.

• Reward: The reward function (Eq. 3.7) tells the agent how ”good” or ”bad” its

choice was.

• Episode: is a full run in the environment.

– If we have a grid world with a goal state, an episode is all the actions from

start to goal state.

– The agent keeps the knowledge from previous episodes in the Q-matrix and

uses this knowledge in future episodes.

– In CloudWorld domain, an episode is a full iteration on the generated data.

• Episode Reward: The agent takes some random actions (explore) and some action

based on its Q-matrix (exploit). Episode reward is the sum of rewards during a

learning episode. We have to keep in mind that regardless of how high or low the

episode reward is, the agent updates the Q-matrix and improves the decision, this

is a feature of the Q-learning.

• Greedy policy: After x learning episodes, we extract a greedy policy from the

Q-matrix, the policy maps each state s ∈ S to an action a ∈ A.

• Greedy Reward: is the sum of reward the agent gets when it acts according to its

greedy policy. This reward represents the learning quality of the agent.

• Oracle agent: is an agent that has the optimal knowledge of the environment. In

other words, this agent knows the best action to take in any given state.
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• Convergence: In our test, we consider that the algorithm has converged, if and only

if, the greedy reward is equal to the Oracle reward. In other words, the algorithm

converges when the agent learns the optimal policy.

Algorithm 2 Testing the Implementation

1: for Epsilon = 0 to 1 step 0.1 do
2: for Learning = 0 to 1 step 0.1 do
3: for Discount = 0 to 1 step 0.1 do

4: Initialize the agent ← (Epsilon, Learning,Discount)

5: while GreedyReward < OptimalReward do

6: episodeAnalysis ← agent.runLearningEpisode

7: episodeReward ← EpisodeAnalysis.getCumulativeReward

8: greedyPolicy ← agent.getGreedyPolicy

9: episodeAnalysis ← agent.evaluatePolicy(GreedyPolicy)

10: greedyReward ← EpisodeAnalysis.getCumulativeReward

11: end while

12: end for

13: end for

14: end for

4.2.4 Agent’s Testing results

From the 1331 tested tuples, 504 tuples have converged within 1000 learning episodes.

Fig. 4.3 shows the relation between convergence and number of learning episodes. ”good”

tuples converge with less learning than ”bad” tuples. The ”best” tuples have converged

with 99 learning episodes, while the ”worst” have converged with 1000 learning episodes.

Across the range {”best tuple”,”worst tuple”}, the number of converged tuples is fairly

linear to the number of episodes, for example, within 500 learning episode 303 tuples

have converged. Fig. 4.4 shows the relation between the each converged tuple (Learning

Rate (X), Discount Factor (Y), Epsilon (Color) and the number of learning episodes (Z))

shows all the converged tuples. We can see that the area with high Learning Rate and

low Discount Factor contains most of the converged tuples. As mentioned earlier the

best tuple converged with 99 learning episode, the figure shows that a less efficient tuple

can converge with more learning episodes or higher Epsilon. In both cases the agent

overcompensate the ”bad” tuples value with more learning episodes. Keeping in mind

that these results reflect the nature of the input data. The state space is 15 · 109 states;

we take a 1000 sample from this state space and feed it to the agent. The probability of

any state to occur twice is fairly low; this is why the agent prefers high Learning Rate i.e.
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Figure 4.3: The relation between convergence and learning episodes.

the agent learns the most from each state because most likely the same state may not

be encountered again. Moreover, the state space does not have any hierarchy, its a fully

connected Markov chain. In a fully connected Markov chain considering future rewards

will confuse the agent, and this why the agent prefer low Discount Factor. It does not

matter in which state the agent is, it always can reach to all of the state space. To have

a clearer view of this behavior (i.e. high Learning Rate, low Discount Factor). Fig. 4.5

shows converged tuples with Epsilon value set to 0.7 and 0.3.

4.2.5 Enhanced Agent

Testing the application live-migration environment showed that migrating an application

is quite expensive in term of time. Therefore, we enhanced the learning process of the

network and cloud selection Agent, aiming at making the agent learn faster. Furthermore,

the enhancement overcome the puzzle of choosing constant values for Epsilon-greedy

and Learning Rate. We improved the agent by implementing explore and Learning Rate

functions, proposed in algorithm 1 and Eq. 3.9 respectively. The core component in these

two functions is StateActionOccurrenceMapper class which as the name suggests, maps

state-action to the occurrence. To test the enhanced agent we set the Discount Factor to

0 and 0.1, and we run the test for 100 times each. The enhanced agent converged with an

average of 39.63 episode and 40.80 respectively. Table 4.2 compare the raw and enhanced

agents, both agents reach to the Oracle agent knowledge, but the enhanced agent reach

there 60% faster. Figure 4.6 shows the agent visualizer, the visualizer include the delay
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Figure 4.4: All the Converged tuples (1331).

and throughput statistics of all the available networks and clouds. Further, the visualizer

shows where the application is running, where Figure 4.6a is the application position
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(a) epsilon = 0.7 (b) epsilon = 0.3

Figure 4.5: Converged tuples with epsilon set to 0.7 and 0.3 .

before performing a migration and 4.6b is the state after performing a migration. The

visualizer does not play any role in the test, but it was a helpful tool to understand the

agent’s behavior.

Table 4.2: Comparison between raw and enhanced agents

Agent Epsilon, Learning, Discount Agent converge after x episode Improvement

Raw 1.0, 1.0, 0 99 -

Raw 0.9, 1.0, 0.1 99 -

Enhanced function, function, 0 ≈ 40 ≈ 60%

Enhanced function, function, 0.1 ≈ 41 ≈ 59%



4.3. Summary 42

(a) Before migrating.

(b) After migrating.

Figure 4.6: Agent Visualizer.

4.3 Summary
In this chapter, we implemented and tested two separate components of APOLLO sys-

tem; the first component addresses application live-migration by setting up and testing

an application live-migration environment. The second component addresses network-

and-cloud selection by implementing a network and cloud Selection Agent. After testing

a ”standard” implementation of the agent in 4.2.4, we enhanced the agent by imple-

menting Explore and Learning Rate functions. Testing the enhanced agent shows 60 %

improvement in learning time.



CHAPTER 5

CONCLUSION AND FUTURE
WORK

This thesis has identified and addressed a number of research challenges in the area of

Mobile Cloud Computing (e.g. Mobility management, Application migration, and net-

work and cloud selection). Mobility management, Application migration, and network

and cloud selection are challenging tasks; each one them belongs to its own domain of

research. For example, to select the ”best” network and cloud in a giving situation (i.e.

infer which network has the highest throughput and lowest delay) has nothing in common

with managing mobility (i.e. performing a seamless handoff). To offload the computa-

tion to the cloud (implementing MCC vision), we need a solution which cross bridge

these areas of research. Our solution was introducing A Proactive Application Migration

System in Mobile Cloud Computing (i.e. APOLLO). APOLLO incorporates M-MIP,

Linux Containers, and Reinforcement Learning Agent to support terminal mobility and

application migration respectively. To develop the system, we tested state-of-the-art con-

tainer technology and validated its use to facilitate application migration. Further, we

have proposed, implemented, and tested a Reinforcement Learning network and cloud

selection agent.

5.1 Future Work
As a future work, we plan to incorporate the developed components in this thesis to test

APOLLO as a complete unit. Implementing and incorporating M-MIP to the developed

testbed and testing the architecture as a complete unit will be immensely valuable for

any future work. Further, the application migration feature in the testbed operates by

the ”stop the world” method. Using ”stop the world” CRIU stops the application, chick

point it to a file and restore the file on another machine. However, CRIU supports

iterative incremental transfer via p.haul protocol which we plan to utilize to reduce the
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down time of the applications. The agent’s test results shown in this thesis focused on

reaching convergence as fast as possible, further analysis of the collected data (3 · 106

learning episodes) have to be done to find the optimal variables that balance convergence

time and user’s QoE. Moreover, testing the agent with real network and cloud statistics

will assure the correctness of agent’s design.

5.2 Lessons learned
In this section, we summarize what we have learned during this research. This summary

is concerned with abstract ideas and how this work contributed to our logical thinking.

Figure 5.1 is an oversimplification of this work. However, we believe that this simplicity

is valuable. The research question is how to extend the resources of mobile devices. To

do so, we either have to find a hardware based solution or a software based solution.

Hardware based solution is not happing soon. Looking for a software based solution, we

find Mobile Cloud Computing (MCC). Implementing an MCC system has three main

challenges each of which belong to a separate domain of research. We look at each of

these challenges to find out why this is a challenge. Then what is the abstract solution

of this challenge, and finally, we identify an implementation of this abstract solution.

Figure 5.1: Thesis abstraction
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[53] K. Mitra, A. Zaslavsky, and C. Åhlund, “Pronet: Proactive context-aware support

for mobility in heterogeneous access networks,” in Local Computer Networks, 2009.

LCN 2009. IEEE 34th Conference on, pp. 675–676, IEEE, 2009.

[54] L. Bottou, “Stochastic learning,” in Advanced lectures on machine learning, pp. 146–

168, Springer, 2004.

[55] A. S. Foundation, Apache Jmeter, 2016 (accessed July 02, 2016).



49

[56] W. Zhang and J. He, “Modeling end-to-end delay using pareto distribution,” in

Internet Monitoring and Protection, 2007. ICIMP 2007. Second International Con-

ference on, pp. 21–21, IEEE, 2007.

[57] J. Kilpi and I. Norros, “Testing the gaussian approximation of aggregate traffic,” in

Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment, pp. 49–

61, ACM, 2002.

[58] C. E. O. for Nuclear Research, Colt Library, 2016 (accessed June 6, 2016).

[59] C. Math, “The apache commons mathematics library,” URL: http://commons.

apache. org/proper/commonsmath/(visited on 09/08/2013)(on p. 52, 162), 2014.

[60] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented representation for

efficient reinforcement learning,” in Proceedings of the 25th international conference

on Machine learning, pp. 240–247, ACM, 2008.

[61] J. MacGlashan, Building a Domain using BURLAP, 2016 (accessed April 17, 2016).

[62] E. Even-Dar and Y. Mansour, “Learning rates for q-learning,” The Journal of Ma-

chine Learning Research, vol. 5, pp. 1–25, 2004.


